Vapor-Liquid Equilibria at 760 mmHg in the Systems Acetonitrile-Methyl Methacrylate, Acetonitrile-Vinyl Acetate, and Methyl Acetate-Vinyl Acetate

Jaime Wisniak* and Abraham Tamir

Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Vapor-liquid equilibria for the title systems have been determined at 760 mmHg. The systems acetonitrile-methyl methacrylate and acetonitrile-vinyi acetate exhibit positive deviations from ideal solution behavior and a minimum boiling point azeotrope. The system methyl acetate-vinyi acetate shows ideal behavior. Activity coefficients and boiling points were well correlated with the composition of the liquid phase.

The data reported here are not available in the literature and were determined as part of a project on UNIFAC parameters.

Experimental Section

Purity of Materials. Acetonitrile (99.5% +) was purchased from H.P.L.C. Bio-Lab, methyl acetate (99.2+%) was purchased from Merck, and methyl methacrylate, analytical grade (99.4+%), and vinyl acetate, analytical grade (99% +), were purchased from Fluka. The reagents were used without further purification after gas chromatographic analysis failed to show any significant impurties. Properties of the components appear in Table I.

Apparatus and Procedure. An all-glass-modified Dvorak-Boublik recirculation still (1) was used in the equilibrium determinations. A vacuum system controlled by a Cartesian manostat connected the vapor condenser with a Swietoslawski ebuillometer and allowed total pressure regulation. The total pressure of the system was determined from the boiling point temperature of the distilled water in the ebulliometer. Temperatures were measured with a Hewlett-Packard quartz thermometer, Model 2801A. The experimental details have been described in a previous publication (2). In order to reduce the polymerization of methyl methacrylate, up to 0.2 wt % of hydroquinone monomethyl ether was added to the original reagent. All analyses were carried out by gas chromatography on a Packard-Becker 417 apparatus provided with a thermal conductivity detector and a Spectra Physics Model SP 4290 electronic integrator. The column was 200 cm long and 0.2 cm in diameter, and operating conditions for the various systems are reported in Table II. Very good separation was achieved with helium as the gas carrier, and calibration analyses were carried out to convert the peak area ratio to composition of the sample. Concentration measurements were accurate to better than $\pm 1\%$. The accuracy in determination of pressure and temperature was $\Delta P = \pm 2$ mmHg and $\Delta T = \pm 0.01$ °C.

All solvents used in this work should be handled with proper care since they are flammable, form explosive mixtures, and can be toxic.

Results

The temperature-concentration measurements at 760 mmHg are reported in Tables III-V and Figures 1, 3, and 5. The activity coefficients (Figures 2 and 4) were calculated from the equations

$$\ln \gamma_{1} = \ln (Py_{1}/P^{\circ}_{1}/P^{\circ}_{1}x_{1}) + (B_{11} - v^{L}_{1})(P - P^{\circ}_{1})/RT + P(1 - y_{1})^{2}\delta_{12}/RT$$
(1)

$$\delta_{ij} = 2B_{ij} - B_{ij} - B_{jj}$$
(2)

Table I. Physical Properties of Pure Components

compound	refract. index (25 °C)	normal bp, °C
acetonitrile	1.3410	81.1ª
	1.3416^{b}	81.3^{b}
methyl methacrylate	1.4118ª	100.4ª
	1.4120°	100.3 ^d
vinyl acetate	1.3932	72.56°
-	1.3934 ^d	72.53^{b}
methyl acetate	1.3588ª	56.94ª
•	1.3589^{b}	56.94 ^b

^a This work. ^b Reference 10. ^c Reference 11. ^d Reference 12.

Table II. Gas Chromatography Conditions

		ter	nperature	, °C
system	column	column	injector	detector
acetonitrile-methyl methacrylate	20% OV-17	110	220	210
acetonitrile-vinyl acetate	SE30	55	9 0	190
vinyl acetate-methyl acetate	20% OV-17	60	90	190

Table III.	Experimental Vapor-Liquid Equilibria Data fo	r
Acetonitril	le (1)-Methyl Methacrylate (2) at 760 mmHg	

• • •	-	-	• •	0	
temp, °C	<i>x</i> ₁	<i>y</i> ₁	γ_1	γ_2	
97.62	0.045	0.125	1.6933	1.0476	
97.06	0.054	0.145	1.6632	1.0512	
96.20	0.070	0.180	1.6324	1.0528	
95.48	0.083	0.205	1.6007	1.0584	
94.30	0.115	0.260	1.5161	1.0587	
93.14	0.150	0.310	1.4334	1.0657	
91.50	0.190	0.370	1.4174	1.0751	
89.80	0.250	0.420	1.2861	1.1283	
89.73	0.265	0.435	1.2593	1.1241	
88.87	0.300	0.470	1.2332	1.1381	
87.11	0.380	0.550	1.2015	1.1549	
85.65	0.460	0.605	1.1416	1.2207	
84.61	0.545	0.670	1.1018	1.2525	
83.47	0.640	0.735	1.0662	1.3202	
83.36	0.650	0.745	1.0678	1.3115	
82.34	0.770	0.815	1.0180	1.4981	
82.03	0.810	0.850	1.0191	1.4858	
81.88	0.855	0.875	0.9986	1.6306	
81.72	0.890	0.905	0.9972	1.6423	
81.29	0.980	0.975	0.9890	2.4118	
81.27	0.985	0.980	0.9896	2.5743	
81.28	0.988	0.981	0.9873	3.0560	
81.30	0.995	0.990	0.9875	3.8523	

For all systems the last two terms contributed less than 2% to the activity coefficient and their influence was important only at very dilute concentrations.

Vapor pressures of the pure components, P_i° , were calculated according to Antoine's equation:

$$\log P^{0}_{i} = \alpha_{i} - \beta_{i}/(t+\delta_{i})$$
(3)

where the constants appear in Table VI. The virial coefficients B_{11} , B_{22} , and B_{12} were estimated by the method of Tsono-

Table IV.	Experimental	Vapor-Liquid	Equilibria	Data for	•
Acetonitri	le (1)-Vinyl Ad	cetate (2) at 76	0 mmHg		

_					-	
	temp, °C	<i>x</i> ₁	<i>y</i> ₁	γ_1	γ_2	
	72.36	0.059	0.070	1.5357	0.9901	
	72.18	0.080	0.088	1.4300	0.9988	
	72.18	0.108	0.116	1.3947	0.9986	
	72.11	0.122	0.130	1.3856	1.0001	
	72.08	0.169	0.174	1.3377	1.0005	
	72.10	0.193	0.192	1.2910	1.0112	
	72.15	0.275	0.257	1.2083	1.0349	
	72.34	0.372	0.327	1.1280	1.0767	
	72.47	0.407	0.354	1.1111	1.0905	
	72.80	0.456	0.394	1.0925	1.1044	
	73.16	0.521	0.444	1.0654	1.1390	
	73.30	0.542	0.462	1.0610	1.1481	
	73.78	0.593	0.494	1.0225	1.1979	
	74.10	0.630	0.538	1.0379	1.1924	
	74.61	0.681	0.584	1.0268	1.2271	
	74.84	0.695	0.590	1.0010	1.2562	
	74.96	0.710	0.603	1.0068	1.2750	
	75 .9 5	0.781	0.678	1.0004	1.3309	
	76.40	0.810	0.701	0.9989	1.4059	
	76.63	0.819	0.707	0.9999	1.4363	
	77.24	0.857	0.766	0.9993	1.4276	
	77.88	0.878	0.793	0.9986	1.4529	
	78.94	0.930	0.872	1.0009	1.5203	
	80.20	0.965	0.931	0.9993	1 5813	

Figure 1. Boiling point diagram for the system acetonitrile (1)-methyl methacrylate (2).

Figure 2. Activity coefficients for the system acetonitrile (1)-methyl methacrylate (2).

Table V. Experimental Vapor-Liquid Equilibria Data for Methyl Acetate (1)-Vinyl Acetate (2) at 760 mmHg

temp, °C	<i>x</i> ₁	<i>y</i> 1	γ_1	γ_2		
71.28	0.074	0.117	1.005	0.9991		
71.03	0.088	0.137	0.9971	0.9983		
69.78	0.158	0.224	1.000	1.001		
69.14	0.196	0.282	0.9976	0.9904		
68.35	0.247	0.343	0.9965	1.002		
67.36	0.301	0.412	1.000	0.9988		
66.72	0.338	0.451	0.9974	0.9945		
66.33	0.353	0.480	1.005	0.9976		
65.78	0.396	0.518	0.9984	0.9987		
64.83	0.456	0.580	1.000	1.000		
64.03	0.506	0.631	1.000	1.000		
62.55	0.603	0.723	0.9998	0.9961		
61.41	0.682	0.786	1.000	0.9962		
60.54	0.743	0.834	0.9970	0.9952		
59.88	0.781	0.861	1.001	1.002		
58.92	0.861	0.917	0.9973	0.9930		
-58.48	0.892	0.935	1.000	0.9952		
58.42	0.917	0.950	0.9986	1.000		

Table VI. Antoine Constants

	α_i	β_i	δ_i	
acetonitrile ^a	7.07352	1279.20	224.00	_
methyl methacrylate ^b	7.1090	1387.86	226.15	
vinyl acetate ^a	6.992 20	1191.99	217.51	
methyl acetate ^a	7.06131	1156.43	219.69	

^aReference 10. ^bReference 13.

MOLE FRACTION ACETONITRILE X1-Y1

Figure 3. Boiling point diagram for the system acetonitrile (1)-vinyl acetate (2).

Figure 4. Activity coefficients for the system acetonkrile (1)-vinyl acetate (2).

poulos (3, 4) using the molar parameters suggested by the author.

The activity coefficients reported in Tables III and IV for the binaries acetonitrile-methyl methacrylate and acetonitrile-vinyi

Figure 5. Boiling point diagram for the system methyl acetate (1)--vinyl acetate (2).

Table VII. Redlich-Kister Constants, Eq 4

system	В	С	D	E	R^2
acetonitrile (1)-methyl methacrylate (2)	0.250	-0.068	0.129	0.183	0.979
acetonitrile (1)-vinyl acetate (2)	0.206	-0.013	0	0	0.978

acetate are thermodynamically consistent by the area and Herington (5) tests and exhibit positive deviations from Raoult's law. The acetonitrile-methyl methacrylate system has a minimum boiling point azeotrope containing close to 100 mol% methyl methacrylate; no effort was made to determine its exact composition because the experimental error is about the difference of composition against the pure component. The binary acetonitrile-vinyl acetate has a minimum boiling point azeotrope that boils at 72.1 °C and contains 19.2 mol % acetonitrile. The binary system methyl acetate-vinyl acetate behaves like an ideal solution.

Activity coefficients of the binaries of acetonltrile were correlated by the Redlich-Kister expansion (6):

$$\log \gamma_1 / \gamma_2 = B(x_2 - x_1) + C(6x_1x_2 - 1) + D(x_2 - x_1)(1 - 8x_1x_2) + E(x_2 - x_1)^2(2x_1x_2 - 1)$$
(4)

The pertinent parameters and coefficients of determination R² appear in Table VII.

The activity coefficients of the acetonitrile binaries were also correlated by the Wilson equations (7):

$$\ln \gamma_1 =$$

$$-\ln (x_1 + A_{12}x_2) + x_2 \left[\frac{A_{12}}{x_1 + A_{12}x_2} - \frac{A_{21}}{A_{21}x_1 + x_2} \right]$$
(5)

$$\ln \gamma_2 =$$

$$-\ln (x_2 + A_{21}x_1) - x_1 \left[\frac{A_{12}}{x_1 + A_{12}x_2} - \frac{A_{21}}{A_{21}x_1 + x_2} \right]$$
(6)

The constants A 12 and A 21 were determined by using the simplified method suggested by Apelblat and Wisniak (8) and appear in Table VIII.

Boiling points of the binary systems were correlated by the equation proposed by Wisniak and Tamir (9):

$$T = x_1 T_1 + x_2 T_2 + x_1 x_2 [C_0 + C_1 (x_1 - x_2) + C_2 (x_1 - x_2)^2 + ...]$$
(7)

	A ₁₂	A ₂₁	$\% \Delta y_1^a$	$\% \Delta y_2^a$
acetonitrile-methyl methacrylate	0.488 05	0.960 00	1.8	1.6
acetonitrile-vinyl acetate	0.85748	0.78171	0.5	1.1
^a $\% \Delta y_i = 100 \sum y_{i,exp} - y_{i,c} $	n			

Table IX. Boiling Point Constants, Eq 7

system	C_0	C_1	C_2	rmsd
acetonitrile (1)-methyl methacrylate (2)	-22.427	12.257	-6.3995	0.15
acetonitrile (1)-vinyl acetate (2)	-15.236	-4.5423	-3.2858	0.09
methyl acetate (1)-vinyl acetate (2)	-2.6480	0.28966	1.7775	0.09

An optimization technique yielded the values for the constants reported in Table IX.

Acknowledgment

Yehudit Reizner and Moshe Golden helped in the experimental and numerical calculations.

Glossary

α, β, δ	constants
A _{ll}	Wilson constants, eq 5 and 6
$B_{\parallel}, B_{\parallel}$	virial coefficients
В, С,	Redlich-Kister constants, eq 4
D,É	
C_i	constants in eq 7
n	number of experimental points
Ρ	total pressure, mmHg
P°,	vapor pressure of pure component, mmHg
R	gas constant, 82.06 cm ³ /(mol·K)
rmsd	root mean square deviation $\left[\sum (T_{exp} - T_{calc})^2 / n\right]^{0.5}$
t, T	temperature, °C, K
T_i	boiling point of pure component, K
\mathbf{v}^{L}_{i}	molar volume of pure liquid i, mL/mol
$\mathbf{x}_i, \mathbf{y}_i$	molar fraction of component <i>i</i> in the liquid and vapor phases
$oldsymbol{\gamma}_i$	activity coefficient of component i

Subscripts

calc	calculated

|--|

component i, j *I*, *j*

Registry No. Acetonitrile, 75-05-8; methyl methacrylate, 80-62-6; vinyl acetate, 108-05-4; methyl acetate, 79-20-9.

Literature Cited

- Boublikova, L.; Lu, B. C. Y. J. Appl. Chem. 1969, 19, 89.
 Wisniak, J.; Tamir, A. J. Chem. Eng. Data 1975, 20, 168.
 Tsonopoulos, C. AIChE J. 1974, 20, 263.
 Tsonopoulos, C. AIChE J. 1975, 21, 827.
 Herington, E. F. G. J. Inst. Pet. 1951, 30, 457.
 Redlich, O.; Kister, A. T. Ind. Eng. Chem. 1948, 40, 345.
 Wilson, G. H. J. Am. Chem. Soc. 1964, 86, 127.
 Applet A: Winside L and Eng. Chem. Res. 1989, 28

- (8)
- Apelblat, A.; Wisnlak, J. Ind. Eng. Chem. Res. 1969, 28, 324. Wisnlak, J.; Tamir, A. Chem. Eng. Sci. 1975, 30, 335. TRC Tables; Selected Values of Properties of Chemical Compounds; (9) (10) Thermodynamic Research Center Data Project: College Station, TX,
- 1974. Perry, R. H. Perry's Chemical Engineers' Handbook, 6th ed.; McGraw-Hill: New York, 1984; pp 3–58.
 Daubert, T. E.; Danner, R. P. Data Compliation. Tables of Properties
- of Pure Compounds; Design Institute for Physical Properties, AIChE: New York, 1985.
- Wisniak, J.; Tamir, A. Vapor-Liquid Equilibrium at 760 mmHg in the (13)System Propyl Bromide-Methyl Methacrylate. Submitted for publication In J. Chem. Eng. Data.

Received for review September 15, 1988. Accepted March 20, 1989.